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Why a Gaseous-argon Based ND

0 (Phase II, ND Upgrade) measures v-Ar
interactions with low threshold and high resolution to enable 5S¢ sensitivity to CP violation

and provides the basis for a comprehensive and a strong BSM program in DUNE
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ND-GAr in DUNE

@ DUNE’s highly capable ND complex includes ND-LAr (see Z. Vallari’s talk
here), ND-GAr, SAND (see Z. Ghorbanimoghaddam’s talk here), & DUNE-
PRISM:

* Precisely measure the v-energy spectrum and v-flavor composition of the 1.2

MW (upgradable to 2.4 MW) high-intensity, wide-band v-beam
* Precisely measure v-Argon cross-sections (see K. Mahn’s talk here)
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http://indico.fnal.gov/event/22303/contributions/245381/
http://indico.fnal.gov/event/22303/contributions/245382/
http://indico.fnal.gov/event/22303/contributions/245284/subcontributions/8571

ND-GAr Concept

Maghet Yolke,
tstrumented with

u-tagqger

ALICE engineering drawing

e A magnetized High Pressure Gas Argon TPC
(HPgTPC) surrounded by ECAL and p-tagger:
» Reference design repurposes ALICE multi-
wire chambers
* Other designs under consideration, e.g. GEMs
e Main design capabilities:
=~ Low threshold
* Excellent PID, tracking efficiency, momentum B,
resolution o5 T
* 47 coverage
* Minimal secondary interactions

Magnet
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The Need for the Low Threshold ND-GAr

e Nucleus is a complicated environment (e.g. specially problematic when using
heavy nuclei as target):
»Nuclear effects, e.g. final state interactions not yet fully understood
# Introduces uncertainties in neutrino energy reconstruction and neutrino event
rate estimation which need to be constrained

Us Elastic
Scattering

Absbrption
o credit: T. Golan
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Examples from Existing Experiments

e Cross sections/neutrino interaction model uncertainties from existing
experiments (all using high threshold detectors) are too large for DUNE
e We need to do better — low threshold ND-GAr can help

T2K https://doi.org/10.1038/s41586-020-2177-0

Type of Uncertainty ve /v, Candidate Relative Uncertainty (%)
Super-K Detector Model 1.5
Pion Final State Interaction and Rescattering Model 1.6
Neutrino Production and Interaction Model Constrained by ND280 Data 2.7
Electron Neutrino and Antineutrino Interaction Model 3.0
Nucleon Removal Energy in Interaction Model 3.7
Modeling of Neutral Current Interactions with Single ~+ Production 1.5
Modeling of Other Neutral Current Interactions 0.2
Total Systematic Uncertainty 6.0

NOVA https://doi.org/10.1103/PhysRevLett.123.151803

Ve Signal ve Bkg. . Signal v, Bkg.
Source (%) (%) (%) (%)
ICross-sections +4.7/-5.8 +3.6/-3.4 +3.2/-4.2 +3.0/-2.9 |
Detector model +3.7/-3.9 +1.3/-0.8 +0.6/-0.6 +3.7/-2.6
ND/FD diffs. +3.4/-3.4 +2.6/-2.9 +4.3/-4.3 +2.8/-2.8
Calibration +2.1/-3.2 +3.5/-3.9 +1.5/-1.7 4-2.9/-0.5
Others +1.6/-1.6 +1.5/-1.5 +1.4/-1.2 +1.0/-1.0
Total ¥7.4/85 +56/6.2 +58/-6.4 +6.3/-4.9
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https://doi.org/10.1103/PhysRevLett.123.151803
https://doi.org/10.1038/s41586-020-2177-0

The Need for the Low Threshold ND-GAr

e Lower threshold of ND-GAr's HPgTPC than ND-LAr:
« Leads to high sensitivity to low energy protons or pions:
»Reveals discrepancies between neutrino event generators, getting us closer
to choosing more accurate neutrino-nucleus interaction models and
constraining uncertainties in neutrino oscillation measurements

heutrine generator discrepancies
at low proton KE, accessible with a
GAr-based detector
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A Wealth of v-Argon Interaction Data

e Using high-pressure gas-argon as detecting medium allows for an independent
sample of v-interactions on argon and constrains the cross-section systematic
uncertainties to the level needed by the oscillation analysis
* €.g. high statistics sample of exclusive neutrino interactions without a pion

or with some number of pions in final state

1 ko fiducial mass for 1
r of v-mode runhing
with a 1.2MW Beam Power

Event class |Number of events per ton-year
v, CC 1.6 x 10°
v, CC 7.1 x 10
ve + V. CC 2.9 x 10*
NC total 5.5 x 10°
v, CCOm 5.9 x 10°
v, CClz™ 4.1 x 10°
v, CC17° 1.6 x 10°
v, CC27 2.1 x 10°
v, CC3n 9.2 x 10*
v,, CC other 1.8 x 10°
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A detailed view of the v-interaction vertex
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Superb PID for v-Ar Interaction Measurements

e dE/dx resolution: 0.8 keV/cm

e Excellent PID combined with low threshold feature allows ND-GAr to help
with correctly identifying the different final state topologies e.g. pion
multiplicities very well

AE /dx-based PID will be
comparable to PEP-4's

e [ > =
L o =
} 30 ............................................ U) >23T, .-a
£ [ 2 g
g 0 S 0.8°9
w o, [ Q 2t o
o 25_._ [PUTPIYS POURPPOOS FU00S. /PO POOL OO - T SOt SOV SO SOPPOY PP SUPS SO0F 100 S TR (&)
v o)
E o
I 0 0.6
20_._ ...............................
b 0.4
15 -
0.2
10; SN | o
_; I I [ I | i [ I | i [ | I On r 1t -ht() on 2
—1
10 ! Momenturn {GeV/c) True category

DUNE Collaborakion, A. Abed Abud et al. Instrumenks § no. 4, (2021) 31,
arXiv:2103,13910 [physics.ins-det].

E D T. A. Mohay 3F Fermilab




BSM Reach

@ In addition to precise measurements of neutrino-argon cross sections, ND-GAr
also enables a rich BSM physics program in DUNE, e.g. rare events such as:
» Neutrino tridents
» Heavy neutral leptons, HNL
* Anomalous Tau neutrinos
* Light dark matter
» Heavy axions

1072

10764

—— DUNE-PRISM
on-axis only

=== no background

Both “DUNE-PRISM”
2 & “on-axis only”
Crr include the ND-GAr
-

(&

10—8_

10710+ Se

L] 55 102! pot, v-mode T 90% CL, 1dof
10~

101 10 10! 102
HNL mass [GeV]

M. Breitbach, L. Buohocore, C. Frugiuele, 2, Kopp and L. Mitbnacht, Searching for
physics beyond the standard model in an off-axis dune near detector, 2102.033%3
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Projected Performance

e A full end-to-end simulation and reconstruction already exists (GArSoft)!
* Momentum resolution and tracking efficiency from a sample of muon neutrino
events: 2.7% & >90% for tracks with >40 MeV/c momenta, respectively
* Proton tracking efficiency from a sample of isotropic protons at the vertex:

>80% for proton tracks with >10 MeV energies
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Projected Performance

e ECAL can efficiently tag/reject nt’s, ys (background to electron-neutrinos),
neutrons — without ECAL, sensitivity to neutral particles is almost non-existent
@ Can also tag/reject outside of fiducial volume backgrounds using timing
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R&D Efforts
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@ Bulk of the charge readout R&D focused on optimizing the ALICE inner (IROC)
and outer (OROC) multiwire chambers, CROCSs need to be built

e But there are opportunities for exploring alternate designs, e.g. Gas-electron

multipliers, GEMs (T. Mohayai FNAL New Initiatives R&D award) ”
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ftp://techtra.pl/en/technology/gem-based-detector/
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R&D Efforts

@ What is involved in the charge readout optimization studies:
» Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)

IROC Gain T. Mohwjai.
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R&D Efforts

@ What is involved in the charge readout optimization studies:

» Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)

# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
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P. Hamacher-Baumann et al., Phys. Rev. D 102, 033005 (020)
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R&D Efforts

@ What is involved in the charge readout optimization studies:
» Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
» Maximize gas gain

C
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R&D Efforts

@ What is involved in the charge readout optimization studies:
» Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
» Maximize gas gain, while minimizing gas electrical breakdown

Ar/CH4 (90%/10%)
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Norman, L. ef al. Dielectric strength of noble and quenched gases for high pressure time
projection chambers. Eur. Phys. 7 C 82, 82 (2022)

Projected Breakdown Voltage at 10 bar, 1 cm (kV)

Ar Xe Ar-CF4 Ar-CHy; Ar-COz CO9 CF4
Townsend 52.6 75.4 61.7 63.9 68.6 129.5 179.7
Meek 69.9 98.9 72.1 80.3 87.3 171.2 212.2
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R&D Efforts

@ What is involved in the charge readout optimization studies:
» Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%
of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
» Maximize gas gain, while minimizing gas electrical breakdown

» Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrino-
hydrogen interactions
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L {|—CH, (10 bar)
| —C,H, (10 bar) IR RN : E
— 102 E_.E.---Gaseous Ar (10 bar) ................ ....... 4,“' ...... -
§ F |- - Liquid Ar BEEEE o 1 "
o " | |—Polystyrene
m i - H
% 10 A O PO SURU SR SR SEP <SOSR SR —]
o 3 E
c C
Ie) C
e L
o
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P. Hamacher-Baumann et al., Phys. Rev. D 102, 033005 (2020)
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R&D Efforts

@ What is involved in the charge readout optimization studies:
» Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:

» Control pile up (drift velocity) and improve spatial resolution (diffusion)

» Maximize gas gain, while minimizing gas electrical breakdown

» Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrino-
hydrogen interactions

@ Optical readout & light collection: classical doping
* Choose an admixture/dopant that will not quench _ ' __D. Gonzélez-Diaz, IGFAE
the scintillation signal ~ 29,CH_ (v —3600v)|  avalanche
» Benefits: ty time-tag, BSM searches, improved <l o, C,F‘" v —330 ovy|  scintillation
track matching with ND-LAr, neutral particle e

reconstruction via time-of-flight, NC interaction 4
wavelength-shifting doping
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Summary

= The DUNE ND-GAr unique design includes
components that enable:

% DUNE to reach 50 sensitivity to CP
violation

% A close-up view of v-Ar interactions to
more precisely identify and resolve the
discrepancies in neutrino-nucleus
interaction models

* A comprehensive search for rare decays and

symmetries beyond the standard model

* A wide range of detector
R&D efforts are underway to
build a highly capable ND-

. Phase Il

Phase II: no ND Upgdrade

DUNE Collaboration, A, A, Abud et al. in 2022
Showmass Summer Si:u,dj. 3, 2022, arXiviR203,06100

GAr:

% Besides R&D on the
acquired ALICE multiwire
readout chambers, we are
exploring various new
detector R&D areas,
including GEM
development & optical

readout
DUNENDHPGTE |

Event: 1
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Projected Performance

@ High-momentum muons and pions will range out of ECAL
@ A muon tagger can achieve a purity of 100% above 1 GeV/c

Purity

—Raw
—ECAL
—ulD
30001500 2000 2500 3000
Track momentum (MeV/c)

S

& superto&\dwc&hg
‘ maghet coils

pressure
vessel

Argon Gas at 10 bar

ALICE Detectof

magnhet yoke instrumented
with a muon tagger, uld

DUNE Collaboration, A, Abed Abud ek al. Instruments § no. 4, (Ro21) 31,

arXiv:2103.13910 [phjsics.éns-d&].
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Low Threshold ND-GAr

e Lower threshold of ND-GAr's HPgTPC than ND-LAr:
« Leads to a high sensitivity to low energy protons or pions:

A GAr-based detector sees lower KE
pre&ov\s thawn a LAYTPC

2

Kinetic Energy (MeV)
=

— GAr {10 atm)
--== GAr {1 atm)

107!

credit: 3. Raaf
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Gas Multiplication Gain Concept
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